What's new

802.11ax router that supports "HE ER SU PPDU" (extended range)

  • SNBForums Code of Conduct

    SNBForums is a community for everyone, no matter what their level of experience.

    Please be tolerant and patient of others, especially newcomers. We are all here to share and learn!

    The rules are simple: Be patient, be nice, be helpful or be gone!

steynblik

New Around Here
I'm looking for a Wi-Fi 6 router that supports a seemingly obscure "extended range" feature. It's sometimes called HE_EXT_SU or HE ER SU PPDU. Based on this post, I hoped that the Linksys MR9600 would support it: https://www.snbforums.com/threads/linksys-mr9600-maximum-mesh-nodes.66356/

The following flags are visible in Wireshark when you look at the beacon header. They appear under IEEE 802.11 Wireless Management > Ext Tag: HE Capabilities > HE PHY Capabilities Information > Bits 56 to 71. Note that the second one shows "Supported":
Code:
.... ...0 .... .... = HE ER SU PPDU W 4x HE-LTF & 0.8us GI: Not supported
<some flags omitted>
...1 .... .... .... = HE ER SU PPDU W 1x HE-LTF & 0.8us GI: Supported

However, on my Linksys MR9600 (running firmware version 1.0.4.205530), both of those flags show "Not supported". I also checked an Asus GT-AX11000, and it said the same thing.

I'm not sure if there's a way to turn the feature on. No settings in the admin dashboard seem to have any effect, and I can't use an alternative firmware like openwrt or freshtomato because of the Broadcom chip this router uses: https://forum.dd-wrt.com/phpBB2/viewtopic.php?t=331843

Are there other routers out there that support this feature? I'm not sure how to find them other than looking at beacon headers from lots of different routers to see if these bits are turned on.
 
Synology Rt6600ax...

Just curious - it's an optional feature - why are you asking?

sfx

rt6600ax_he_er_su.png
 
Last edited:
Thank you! I ordered the Synology RT6600ax over the weekend and verified that it does indeed show both features as "supported".

Just hoping to kick the tires a bit.
 
@sfx2000

The bit decoders are under hostapd aka linux AP software.


Code:
##### IEEE 802.11ax related configuration #####################################
#ieee80211ax: Whether IEEE 802.11ax (HE) is enabled
# 0 = disabled (default)
# 1 = enabled
#ieee80211ax=1
# disable_11ax: Boolean (0/1) to disable HE for a specific BSS
#disable_11ax=0
#he_su_beamformer: HE single user beamformer support
# 0 = not supported (default)
# 1 = supported
#he_su_beamformer=1
#he_su_beamformee: HE single user beamformee support
# 0 = not supported (default)
# 1 = supported
#he_su_beamformee=1
#he_mu_beamformer: HE multiple user beamformer support
# 0 = not supported (default)
# 1 = supported
#he_mu_beamformer=1
# he_bss_color: BSS color (1-63)
#he_bss_color=1
# he_bss_color_partial: BSS color AID equation
#he_bss_color_partial=0
#he_default_pe_duration: The duration of PE field in an HE PPDU in us
# Possible values are 0 us (default), 4 us, 8 us, 12 us, and 16 us
#he_default_pe_duration=0
#he_twt_required: Whether TWT is required
# 0 = not required (default)
# 1 = required
#he_twt_required=0
#he_twt_responder: Whether TWT (HE) responder is enabled
# 0 = disabled
# 1 = enabled if supported by the driver (default)
#he_twt_responder=1
#he_rts_threshold: Duration of STA transmission
# 0 = not set (default)
# unsigned integer = duration in units of 16 us
#he_rts_threshold=0
#he_er_su_disable: Disable 242-tone HE ER SU PPDU reception by the AP
# 0 = enable reception (default)
# 1 = disable reception
#he_er_su_disable=0
# HE operating channel information; see matching vht_* parameters for details.
# he_oper_centr_freq_seg0_idx field is used to indicate center frequency of 80
# and 160 MHz bandwidth operation. In 80+80 MHz operation, it is the center
# frequency of the lower frequency segment. he_oper_centr_freq_seg1_idx field
# is used only with 80+80 MHz bandwidth operation and it is used to transmit
# the center frequency of the second segment.
# On the 6 GHz band the center freq calculation starts from 5.950 GHz offset.
# For example idx=3 would result in 5965 MHz center frequency. In addition,
# he_oper_chwidth is ignored, and the channel width is derived from the
# configured operating class or center frequency indexes (see
# IEEE P802.11ax/D6.1 Annex E, Table E-4).
#he_oper_chwidth
#he_oper_centr_freq_seg0_idx
#he_oper_centr_freq_seg1_idx
#he_basic_mcs_nss_set: Basic NSS/MCS set
# 16-bit combination of 2-bit values of Max HE-MCS For 1..8 SS; each 2-bit
# value having following meaning:
# 0 = HE-MCS 0-7, 1 = HE-MCS 0-9, 2 = HE-MCS 0-11, 3 = not supported
#he_basic_mcs_nss_set
#he_mu_edca_qos_info_param_count
#he_mu_edca_qos_info_q_ack
#he_mu_edca_qos_info_queue_request=1
#he_mu_edca_qos_info_txop_request
#he_mu_edca_ac_be_aifsn=0
#he_mu_edca_ac_be_ecwmin=15
#he_mu_edca_ac_be_ecwmax=15
#he_mu_edca_ac_be_timer=255
#he_mu_edca_ac_bk_aifsn=0
#he_mu_edca_ac_bk_aci=1
#he_mu_edca_ac_bk_ecwmin=15
#he_mu_edca_ac_bk_ecwmax=15
#he_mu_edca_ac_bk_timer=255
#he_mu_edca_ac_vi_ecwmin=15
#he_mu_edca_ac_vi_ecwmax=15
#he_mu_edca_ac_vi_aifsn=0
#he_mu_edca_ac_vi_aci=2
#he_mu_edca_ac_vi_timer=255
#he_mu_edca_ac_vo_aifsn=0
#he_mu_edca_ac_vo_aci=3
#he_mu_edca_ac_vo_ecwmin=15
#he_mu_edca_ac_vo_ecwmax=15
#he_mu_edca_ac_vo_timer=255
# Spatial Reuse Parameter Set
#
# SR Control field value
# B0 = PSR Disallowed
# B1 = Non-SRG OBSS PD SR Disallowed
# B2 = Non-SRG Offset Present
# B3 = SRG Information Present
# B4 = HESIGA_Spatial_reuse_value15_allowed
#he_spr_sr_control
#
# Non-SRG OBSS PD Max Offset (included if he_spr_sr_control B2=1)
#he_spr_non_srg_obss_pd_max_offset
# SRG OBSS PD Min Offset (included if he_spr_sr_control B3=1)
#he_spr_srg_obss_pd_min_offset
#
# SRG OBSS PD Max Offset (included if he_spr_sr_control B3=1)
#he_spr_srg_obss_pd_max_offset
#
# SPR SRG BSS Color (included if he_spr_sr_control B3=1)
# This config represents SRG BSS Color Bitmap field of Spatial Reuse Parameter
# Set element that indicates the BSS color values used by members of the
# SRG of which the transmitting STA is a member. The value is in range of 0-63.
#he_spr_srg_bss_colors=1 2 10 63
#
# SPR SRG Partial BSSID (included if he_spr_sr_control B3=1)
# This config represents SRG Partial BSSID Bitmap field of Spatial Reuse
# Parameter Set element that indicates the Partial BSSID values used by members
# of the SRG of which the transmitting STA is a member. The value range
# corresponds to one of the 64 possible values of BSSID[39:44], where the lowest
# numbered bit corresponds to Partial BSSID value 0 and the highest numbered bit
# corresponds to Partial BSSID value 63.
#he_spr_srg_partial_bssid=0 1 3 63
#
#he_6ghz_max_mpdu: Maximum MPDU Length of HE 6 GHz band capabilities.
# Indicates maximum MPDU length
# 0 = 3895 octets
# 1 = 7991 octets
# 2 = 11454 octets (default)
#he_6ghz_max_mpdu=2
#
#he_6ghz_max_ampdu_len_exp: Maximum A-MPDU Length Exponent of HE 6 GHz band
# capabilities. Indicates the maximum length of A-MPDU pre-EOF padding that
# the STA can receive. This field is an integer in the range of 0 to 7.
# The length defined by this field is equal to
# 2 pow(13 + Maximum A-MPDU Length Exponent) -1 octets
# 0 = AMPDU length of 8k
# 1 = AMPDU length of 16k
# 2 = AMPDU length of 32k
# 3 = AMPDU length of 65k
# 4 = AMPDU length of 131k
# 5 = AMPDU length of 262k
# 6 = AMPDU length of 524k
# 7 = AMPDU length of 1048k (default)
#he_6ghz_max_ampdu_len_exp=7
#
#he_6ghz_rx_ant_pat: Rx Antenna Pattern Consistency of HE 6 GHz capability.
# Indicates the possibility of Rx antenna pattern change
# 0 = Rx antenna pattern might change during the lifetime of an association
# 1 = Rx antenna pattern does not change during the lifetime of an association
#     (default)
#he_6ghz_rx_ant_pat=1
#
#he_6ghz_tx_ant_pat: Tx Antenna Pattern Consistency of HE 6 GHz capability.
# Indicates the possibility of Tx antenna pattern change
# 0 = Tx antenna pattern might change during the lifetime of an association
# 1 = Tx antenna pattern does not change during the lifetime of an association
#     (default)
#he_6ghz_tx_ant_pat=1
# 6 GHz Access Point type
# This config is to set the 6 GHz Access Point type. Possible options are:
# 0 = Indoor AP (default)
# 1 = Standard Power AP
# This has no impact for operation on other bands.
#he_6ghz_reg_pwr_type=0
# Unsolicited broadcast Probe Response transmission settings
# This is for the 6 GHz band only. If the interval is set to a non-zero value,
# the AP schedules unsolicited broadcast Probe Response frames to be
# transmitted for in-band discovery. Refer to
# IEEE P802.11ax/D8.0 26.17.2.3.2, AP behavior for fast passive scanning.
# Valid range: 0..20 TUs; default is 0 (disabled)
#unsol_bcast_probe_resp_interval=0

Looks like they even added some BE flags to the config option for routers. If you get a BE card that can be used with hostapd it would be the cheaper option than buying a router or AP with it enabled. I did this with an AC2600 card before AX came around and it worked well. Most of these over priced devices aren't running anything special besides Linux for the OS and hostapd for the WIFI side.
 
Looks like they even added some BE flags to the config option for routers. If you get a BE card that can be used with hostapd it would be the cheaper option than buying a router or AP with it enabled. I did this with an AC2600 card before AX came around and it worked well. Most of these over priced devices aren't running anything special besides Linux for the OS and hostapd for the WIFI side.

I'm fully aware of how to configure hostapd...

Flags set in the config file have to have support in the wireless driver as well, so step carefully...
 

Latest threads

Sign Up For SNBForums Daily Digest

Get an update of what's new every day delivered to your mailbox. Sign up here!
Top